
Microservices with Apache Karaf and
Apache CXF: practical experience

Andrei Shakirin, Talend

Agenda

• Microservices and OSGi
• Core ideas of OSGi
• Apache Karaf
• Design and develop in OSGi: the history of one

project
• Conclusions and lessons learned

About Me

• Software architect in Talend Team
• PMC in Apache CXF
• Contributions in Apache Syncope, Apache

Aries and Apache Karaf

Microservices 
(James Lewis and Martin Fowler)

• Application as suite of small services
• Organization around business capabilities
• Each service runs in own process
• Smart endpoints and dumb pipes
• Decentralized data management and

technologies
• Infrastructure automation

Microservices: Pros and Cons

Benefits:
• Services themselves are simple, focusing on doing

one thing well
• Systems are loosely coupled
• Services and can be (relatively) independently

developed and deployed by different teams
• Services can be scaled differently
• Service team can use the most appropriate

technologies and programming languages

Microservices: Pros and Cons

Downsides:
• Mistakes in services boundaries definition are costly
• Remote calls are expensive and unreliable
• Testing, debugging and monitoring in distributed system

became more difficult
• Change syntax or semantic of remote contracts

introduces additional risks
• Infrastructure becomes more complex
• Eventual consistency

OSGi => Modular Applications

What is the module?

OSGi: Modules and Modularity

OSGi: Modules and Modularity

OSGi: software modules

• Implements a specific function
• Can be used alone or combined with others
• Provides functionality to be reused or replaced
• Has well defined name
• Has a version

jars modules

OSGi: software modules

• It is hard to achieve loosely coupling between the
modules (only partial solutions: Class.forName;
ServiceLoader; log-appenders)

• You cannot encapsulate functionality in the module
• Missing runtime control which version of the

dependencies functionality will be used
• Self-describing module contract is missing

But:

• Keep the name and version of JAR file
• Add explicit package dependencies

(requirements)
• Add explicit package exports (capabilities)
• Provide API as external contract (OSGi services)

OSGi bundle

OSGi Services

• Service Contract is one or more java interfaces
• Bundle can register the service in registry
• Other bundle can get and listen for the service
• Multiple registered services can be distinguished using properties
• No any coupling between bundles except Service Contract:

neither in code, no on the classpath (different to java
ServiceLoader)

OSGi Decoupling

ActiveMQ Bundle
Exports:
org.apache.activemq.pool 5.14.0,
org.apache.activemq.command 5.14.0

MyAsyncCommunication Bundle

MyBusinessDomain Bundle

Imports: my.connector.async [1.0,2) Exports: my.connector.async
1.0.0

Export Services
Implementations:
my.connector.async.Sender,
my.connector.async.Listener

Import Service:
my.connector.async.Sender,
my.connector.async.Listener

Imports:
org.apache.activemq.pool [5.14,6),
org.apache.activemq.command [5.14,6)

Decoupling
JMS Communication
Implementation

OSGi Decoupling

Article API Bundle

Exports: my.domain.article 1.1.0
(my.domain.article.Availability interface)

Article Logic Bundle

MyCartService Bundle

Imports: my.domain.article [1.0,2)

Export Service Implementation:
my.domain.article.Availability

Import Service:
my.domain.article.Availability

Imports: my.domain.article
[1.0,2)

Decoupling

Availabilty Logic
 Implementation

Availabilit
yDAO

Bundle

SAP
Connector

Bundle

 Declare OSGi Services: Option 1

• Declarative Services

Christian Schneider Blog: “Apache Karaf Tutorial part 10 - Declarative
services”

http://www.liquid-reality.de/display/liquid/2015/06/30/Apache+Karaf+Tutorial+part+10+-+Declarative+services
http://www.liquid-reality.de/display/liquid/2015/06/30/Apache+Karaf+Tutorial+part+10+-+Declarative+services

 Declare OSGi Services: Option 2

• Blueprint

Classic Microservices vs OSGi

Aspect Microservices OSGi

Application structure Suite of small services Suite of bundles /
modules

Boundaries Around business
capabilities

Modularization around
business and technical
aspects

Communication Lightweight remote Flexible: local or remote

Contract Remote API Local java interfaces or
remote API

Decentralized Data
Management

Desired Depends on
requirements for single
process, desired for
multiple processes

Infrastructure
Automation

Desired Desired

Apache Karaf

• OSGi based Container using Apache Felix or Eclipse
Equinox implementations

• Runs as Container, Docker Image, embedding (karaf-boot)
• Provisioning (maven repository, file, http, …)
• Configuration
• Console
• Logging, Management, Security

Karaf Features

Maven Repo /
Nexus

mvn:my.company/order-service-features/1.0.0/xml

Karaf

featuresRepositories=…, mvn:my.company/order-service-features/
1.0.0/xml

featuresBoot= …, order-service

org.apache.karaf.features.cfg

feature:addurl mvn:my.company/order-service-features/1.0.0/xml
feature:install order-service

console

Migration to OSGi in eCommerce Project

• Business Domain: WebShop, eCommerce
• Team: 20 – 30 persons
• Initial technologies: Java, Spring, Hibernate, Apache CXF,

Apache Camel, ActiveMQ, Tomcat
• Current technologies: Java, Hibernate, Apache CXF,

ActiveMQ, OSGi + Apache Karaf, SpringBoot, MongoDB

Online Shop Architecture

Middleware

Web Browser

Frontend

Oracle DB

Mobile App

Credit-Worthiness
Check System

Active
MQ

SAP

Online Finance
System

External consumers

REST

Online Shop Design

Customer Domain Article Domain Order Domain

User Service Cart Service Article Service Order Service

SAP
Messaging

REST REST REST REST

Core Domain

DAOs

DB DB DB

Online Shop Design

Customer Domain Article Domain Order Domain

User Service Cart Service Article Service Order Service

SAP
Messaging

REST REST REST REST

Core Domain

DAOs

DB DB DB

Step 1: Packages Refactoring

Christian Schneider ApacheCon Europe 2014 “Reflection of Design of Business Applications”

com.mycompany
 .domain.user
 .routes
 .processors
 .converters
 .mappers
 .exceptions

com.mycompany
 .domain.user
 .account
 .password
 .deliveryaddress
 .billingaddress

• Classes for business function are grouped together -> high cohesion
• Less dependencies between packages -> low coupling
• Private and public packages are easily recognizable (model, api,
impl)

Step 2: Connectors API

DB Connector SAP Connector Messaging Connector

Customer Domain Article Domain Order Domain

User Service Cart Service Article Service Order Service

DB
SAP

ActiveMQ

REST REST REST REST

Core Domain

API: OSGI Svc API: OSGI Services API: OSGI Services

DB DB

DB Connector

API: OSGI Svc

DB Connector

API: OSGI Svc

Step 3: Parallel Web And OSGi Deployment

Module Code

resources

spring

OSGI-INF/blueprint

Web Application
WAR

OSGi
Features

<packaging>bundle</packaging>
…
<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</
artifactId>
</plugin>

Step 4: Refactor Complex Domain Logic (Camel Routes)

from(„vm:PriceAndAvailability“)
 .bean(availabilityOptionsMapper)
 .multicast(hdrAggregationStrategy
)
 .parallelProcessing().timeout(100)
 .to(„direct:getPrice“)
 .to („direct:getAvailability“)
 .end
.validate(availabilityValidator)
.bean(priceAvailResponseMapper)

1 PriceAndAvailResult getPriceAndAvail (Cart cart,
 AvailabilityOptions options);

• Type safe interfaces
• Clearly shows what data is proceed
• Not essentially verbose as Camel route
• Easy to debug and understand for team

ATPOptions atpOptions = mapAvailabilityOptions(options);
…
final Future<AvailabilityReturner> availabilityFuture =
 executorService.submit(availabilityTask);
final Future<PriceReturner> priceFuture =
 executorService.submit(priceTask);
…
validateAvailability(availability);
PriceAndAvailResult result = new
PriceAndAvailabilityResult(availability,
 price);

Christian Schneider ApacheCon Europe 2014 “Reflection of Design of Business Applications”

• What type of data is
transmitted?

• Debug me ☺
• Would it be harder in plain

Java?

2

Step 4: Domains APIs And Refactoring

SAP Connector Messaging Connector

Customer Domain
Logic

Article Domain Logic
Order Domain

Logic

User Service Cart Service Article Service Order Service

SAP
ActibeMQ

REST REST REST REST

API: OSGI Services API: OSGI Services

API: OSGI ServicesAPI: OSGI ServicesAPI: OSGI Services

DB Connector

DB

API: OSGI Svc

DB

DB Connector

API: OSGI Svc

DB

DB Connector

API: OSGI Svc

Customer
API; Domain

Model

Article API;
Domain
Model

Order API;
Domain
Model

Container Middleware

Step 5: Separate containers for some services

User Service

Messaging

REST

DB DB

Cart Service

REST

Checkout
Service

REST

Order Service

REST

Newsletter
Service

REST

Address Service

REST

Container Event

Event Service

REST

Container Article

Article
Service

REST

Messaging
SAP

Messaging

async

RE
ST

RE
ST

RE
ST

async

REST Communication in OSGi
• DOSGi and Aries Remote Service Admin (RSA)
 Christian Schneider “Lean Microservices on OSGi“, ApacheCon EU 2016

• Explicit via CXF

Design For Failure With Hystrix(Netflix)

Resilience With Hystrix

Resilience With Hystrix

Conclusions and Lessons Learned

• Design your application modular (either in OSGi or not)
• Care about decoupling between modules, high cohesion

inside the module and modules dependencies
• Continuously refactor your modules to achive optimal

boundaries
• Stay on single process at the beginning, split application

into different processes only if it is required and brings
benefits

• Define your remote and async APIs carefully, design
remote calls for failure

OSGi Critic and Myths
OSGi is complex: in understanding, in build, in deployment
and in debugging and has poor tooling support

The most understandable specification in the world (inclusive HTTP,
ConfigAdmin, DS, RSA, JTA, JMX, JPA)

<packaging>bundle</packaging>
…
<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
</plugin>

Features, configuration, security, console

OSGi Critic and Myths

OSGi Critic and Myths

OSGi is not supported by frameworks and libraries

OSGi Critic and Myths

OSGi is not supported by frameworks and libraries

OSGi Critic and Myths
The most important OSGi feature is hot updates: install, delete or
replace the bundle on the fly

1. Normally it is safer to restart the whole Container to have
reproducible state in production

2. Hot deployment is not a free lunch: application have to be
designed and tested for that

3. The main OSGi gain is not a hot deployment, but clean modular
application design, isolation and decoupling of modules. Hot
deployment is more derivative feature

4. Can be useful in developer environment, special use cases, partly
restarts

Yes, OSGi is designed for updates without restarting the whole
application, but:

REST Communication in OSGi

• Consider REST Architectural Style principles (resources
design, verbs contracts, response codes, statelessness)

• Reuse CXF providers, features and interceptors (logging,
security)

• Customize (if necessary) through own JAX-RS Filters and
Interceptors, MessageBodyReaders and Writers,
ParamConverters, CXF Interceptors

• Consider to use Swagger to document and test your API
• Make your external calls resilient

OSGi Decoupling

Hibersap Bundle
Exports: org.hibersap,
org.hibersap.execustion.jco,
org.hibersap.mapping.model

MySapFacade Bundle

MyBusinessDomain Bundle

Imports: my.connector.sap Exports: my.connector.sap

Export Service Implementation:
my.connector.sap.OrderExport

Import Service:
my.connector.sap.OrderExport

Decoupling

Exports: org.hibersap,
org.hibersap.execustion.jco,
org.hibersap.mapping.model

SAP JCO Communication
Implementation

Karaf Deployment

Configured as Jenkins JOBs with folwoing steps:
1. Stop Karaf Instance
2. Replace org.apache.karaf.features.cfg
3. Start Karaf Instance
4. Waiting for AvailabilityService

System Environments

Integration Consolidation Production

Developer Tests • QA
• Performance

tests
• Load tests

Production

LB LB

Swagger in JAXRS API

Swagger in JAXRS API: Java First

Swagger in JAXRS API: WADL First

